Part Number Hot Search : 
XP01114 TLE8457 DS1238A SSM3K12T HC00A ON0205 LT3970 ATS04
Product Description
Full Text Search
 

To Download 33078 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  device operating temperature range package   dual/quad low noise operational amplifiers ordering information mc33078d mc33078p t a = 40 to +85 c so8 plastic dip order this document by mc33078/d         (dual, top view) 4 v ee d suffix plastic package case 751a (so14) p suffix plastic package case 646 d suffix plastic package case 751 (so8) p suffix plastic package case 626 1 1 8 8 14 1 14 1 dual 1 2 3 5 6 7 8 v cc output 2 inputs 2 inputs 1 + 1 + 2 output 1 (quad, top view) 1 2 3 4 5 6 7 14 8 9 10 11 12 13 output 1 v cc output 4 inputs 4 output 2 v ee inputs 3 output 3 1 4 23 inputs 1 inputs 2 pin connections pin connections quad mc33079d mc33079p so14 plastic dip 1 motorola analog ic device data
     the mc33078/9 series is a family of high quality monolithic amplifiers employing bipolar technology with innovative high performance concepts for quality audio and data signal processing applications. this family incorporates the use of high frequency pnp input transistors to produce amplifiers exhibiting low input voltage noise with high gain bandwidth product and slew rate. the all npn output stage exhibits no deadband crossover distortion, large output voltage swing, excellent phase and gain margins, low open loop high frequency output impedance and symmetrical source and sink ac frequency performance. the mc33078/9 family offers both dual and quad amplifier versions, tested over the automotive temperature range and available in the plastic dip and soic packages (p and d suffixes). ? dual supply operation: 5.0 v to 18 v ? low voltage noise: 4.5 nv/ hz  ? low input offset voltage: 0.15 mv ? low t.c. of input offset voltage: 2.0 m v/ c ? low total harmonic distortion: 0.002% ? high gain bandwidth product: 16 mhz ? high slew rate: 7.0 v/ m s ? high open loop ac gain: 800 @ 20 khz ? excellent frequency stability ? large output voltage swing: +14.1 v/ 14.6 v ? esd diodes provided on the inputs representative schematic diagram (each amplifier) v cc d1 q4 q9 q3 q5 pos d3 c2 r7 q11 neg r2 q8 d4 c3 r9 q10 q2 d2 q6 r4 q7 q5 r6 q12 r3 c1 r1 q1 z1 j1 amplifier biasing v ee q3 v out ? motorola, inc. 1996 rev 0
mc33078 mc33079 2 motorola analog ic device data maximum ratings rating symbol value unit supply voltage (v cc to v ee) v s +36 v input differential voltage range v idr (note 1) v input voltage range v ir (note 1) v output short circuit duration (note 2) t sc indefinite sec maximum junction temperature t j +150 c storage temperature t stg 60 to +150 c maximum power dissipation p d (note 2) mw notes: 1. either or both input voltages must not exceed the magnitude of v cc or v ee . 2. power dissipation must be considered to ensure maximum junction temperature (t j ) is not exceeded (see figure 1). dc electrical characteristics (v cc = +15 v, v ee = 15 v, t a = 25 c, unless otherwise noted.) characteristics symbol min typ max unit input offset voltage (r s = 10 w , v cm = 0 v, v o = 0 v) (mc33078) t a = +25 c t a = 40 to +85 c (mc33079) t a = +25 c t a = 40 to +85 c |v io | e e e e 0.15 e 0.15 e 2.0 3.0 2.5 3.5 mv average temperature coefficient of input offset voltage r s = 10 w , v cm = 0 v, v o = 0 v, t a = t low to t high d v io / d t e 2.0 e m v/ c input bias current (v cm = 0 v, v o = 0 v) t a = +25 c t a = 40 to +85 c i ib e e 300 e 750 800 na input offset current (v cm = 0 v, v o = 0 v) t a = +25 c t a = 40 to +85 c i io e e 25 e 150 175 na common mode input voltage range ( d v io = 5.0 mv, v o = 0 v) v icr 13 14 e v large signal voltage gain (v o = 10 v, r l = 2.0 k w ) t a = +25 c t a = 40 to +85 c a vol 90 85 110 e e e db output voltage swing (v id = 1.0v) r l = 600 w r l = 600 w r l = 2.0 k w r l = 2.0 k w r l = 10 k w r l = 10 k w v o + v o v o + v o v o + v o e e +13.2 e +13.5 e +10.7 11.9 +13.8 13.7 +14.1 14.6 e e e 13.2 e 14 v common mode rejection (v in = 13v) cmr 80 100 e db power supply rejection (note 3) v cc /v ee = +15 v/ 15 v to +5.0 v/ 5.0 v psr 80 105 e db output short circuit current (v id = 1.0 v, output to ground) source sink i sc +15 20 +29 37 e e ma power supply current (v o = 0 v, all amplifiers) (mc33078) t a = +25 c (mc33078) t a = 40 to +85 c (mc33079) t a = +25 c (mc33079) t a = 40 to +85 c i d e e e e 4.1 e 8.4 e 5.0 5.5 10 11 ma note: 3. measured with v cc and v ee differentially varied simultaneously.
mc33078 mc33079 3 motorola analog ic device data ac electrical characteristics (v cc = +15 v, v ee = 15 v, t a = 25 c, unless otherwise noted.) characteristics symbol min typ max unit slew rate (v in = 10 v to +10 v, r l = 2.0 k w , c l = 100 pf a v = +1.0) sr 5.0 7.0 e v/ m s gain bandwidth product (f = 100 khz) gbw 10 16 e mhz unity gain frequency (open loop) f u e 9.0 e mhz gain margin (r l = 2.0 k w )c l = 0 pf c l = 100 pf a m e e 11 6.0 e db phase margin (r l = 2.0 k w )c l = 0 pf c l = 100 pf f m e e 55 40 e degree s channel separation (f = 20 hz to 20 khz) cs e 120 e db power bandwidth (v o = 27 v pp , r l = 2.0 k w , thd 1.0%) bw p e 120 e khz distortion (r l = 2.0 k w , f = 20 hz to 20 khz, v o = 3.0 v rms , a v = +1.0) thd e 0.002 e % open loop output impedance (v o = 0 v, f = 9.0 mhz) |z o | e 37 e w differential input resistance (v cm = 0 v) r in e 175 e k w differential input capacitance (v cm = 0 v) c in e 12 e pf equivalent input noise voltage (r s = 100 w , f = 1.0 khz) e n e 4.5 e nv/ hz equivalent input noise current (f = 1.0 khz) i n e 0.5 e pa/ hz v cm = 0 v t a = 25 c figure 1. maximum power dissipation versus temperature figure 2. input bias current versus supply voltage figure 3. input bias current versus temperature figure 4. input offset voltage versus temperature p , maximum power dissipation (mw) d 20 0 20 40 60 80 100 120 140 160 t a , ambient temperature ( c) 55 40 mc33078p & mc33079p mc33079d mc33078d 5.0 10 15 20 v cc , | v ee |, supply voltage (v) i , input bias current (na) ib t a , ambient temperature ( c) 0 25 50 75 100 125 55 25 v cc = +15 v v ee = 15 v v cm = 0 v v , input offset voltage (mv) io t a , ambient temperature ( c) 55 25 0 25 50 75 100 125 unit 1 unit 2 unit 3 v cc = +15 v v ee = 15 v r s = 10 w v cm = 0 v a v = +1 i , input bias current (na) ib 2400 2000 1600 1200 800 400 0 800 600 400 200 0 1000 800 600 400 200 0 2.0 1.0 0 1.0 2.0
mc33078 mc33079 4 motorola analog ic device data sink source v cc = +15 v v ee = 15 v r l < 100 w v id = 1.0 v 55 c 25 c v cc = +15 v v ee = 15 v 125 c 55 c 125 c 25 c figure 5. input bias current versus common mode voltage figure 6. input common mode voltage range versus temperature figure 7. output saturation voltage versus load resistance to ground figure 8. output short circuit current versus temperature figure 9. supply current versus temperature figure 10. common mode rejection versus frequency i , input bias current (na) ib 15 10 5.0 0 5.0 10 15 v cm , common mode voltage (v) v cc = +15 v v ee = 15 v t a = 25 c v icr voltage range v cm 55 25 0 25 50 75 100 125 t a , ambient temperature ( c) +v cm v cc = +3.0 v to +15 v v ee = 3.0 v to 15 v d v io = 5.0 mv v o = 0 v | i |, output short circuit current (ma) sc t a , ambient temperature ( c) 55 25 0 25 50 75 100 125 i , supply current (ma) cc t a , ambient temperature ( c) 55 25 0 25 50 75 100 125 10 v 15 v 15 v 10 v 5.0 v 5.0 v v cm = 0 v r l = v o = 0 v mc33078 mc33079 supply voltages cmr, common mode rejection (db) 100 1.0 k 10 k 100 k 1.0 m 10 m f, frequency (hz) v cc = +15 v v ee = 15 v v cm = 0 v d v cm = 1.5 v t a = 25 c , output saturation voltage (v) sat r l , load resistance to ground (k w ) 0 1.0 2.0 3.0 4.0 , input common mode voltage range (v) v 600 500 400 300 200 100 0 v cc 0 v cc 0.5 v cc 1.0 v cc 1.5 v ee +1.5 v ee +1.0 v ee +0.5 v ee +0 50 30 20 10 40 10 8.0 6.0 4.0 2.0 0 160 140 120 100 80 60 40 20 v cc 1.0 v cc 3.0 v cc 5.0 v ee +5.0 v ee +3.0 v ee +1.0 cmr = 20log + d v cm a dm v cm v o a dm d v o
mc33078 mc33079 5 motorola analog ic device data v o , output voltage (v ) pp r l = 2.0 k w f 10 hz d v o = 2/3 (v cc v ee ) t a = 25 c r l = 10 k w c l = 0 pf f = 100 khz t a = 25 c figure 11. power supply rejection versus frequency figure 12. gain bandwidth product versus supply voltage figure 13. gain bandwidth product versus temperature figure 14. maximum output voltage versus supply voltage figure 15. output voltage versus frequency figure 16. open loop voltage gain versus supply voltage f, frequency (hz) psr, power supply rejection (db) 100 1.0 k 10 k 100 k 1.0 m 10 m +psr psr v cc = +15 v v ee = 15 v t a = 25 c v cc |v ee | , supply voltage (v) gwb, gain bandwidth product (mhz) 5.0 10 15 20 t a , ambient temperature ( c) gwb, gain bandwidth product (mhz) 55 25 0 50 75 100 25 125 v cc = +15 v v ee = 15 v f = 100 khz r l = 10 k w c l = 0 pf v cc |v ee | , supply voltage (v) v , output voltage (vp) o 5.0 10 15 20 v o v o + t a = 25 c r l = 10 k w r l = 10 k w r l = 2.0 k w r l = 2.0 k w f, frequency (hz) 10 100 1.0 k 10 k 100 k 1.0 m 10 m v cc = +15 v v cc = 15 v r l = 2.0 k w a v = +1.0 thd 1.0% t a = 25 c v cc |v ee | , supply voltage (v) vol a , open loop voltage gain (db) 5.0 10 15 20 140 120 100 80 60 40 20 0 30 20 10 0 20 15 10 5.0 0 20 15 10 5.0 0 5.0 10 15 20 35 30 25 20 15 10 5.0 0 110 100 90 80 +psr = 20log d v o /a dm d v cc a dm + d v o v ee psr = 20log d v o /a dm d v cc d v cc
mc33078 mc33079 6 motorola analog ic device data vol a , open loop voltage gain (db) figure 17. open loop voltage gain versus temperature figure 18. output impedance versus frequency figure 19. channel separation versus frequency figure 20. total harmonic distortion versus frequency figure 21. total harmonic distortion versus output voltage figure 22. slew rate versus supply voltage t a , ambient temperature ( c) 55 25 0 25 50 75 100 125 v cc = +15 v v ee = 15 v r l = 2.0 k w f 10 hz d v o = 10 v to +10 v f, frequency (hz) | z |, output impedance ( ) w 1.0 k 10 k 100 k 1.0 m 10 m o v cc = +15 v v ee = 15 v v o = 0 v t a = 25 c a v = 1000 a v = 100 a v = 10 a v = 1.0 f, frequency (hz) cs, channel separation (db) cs = 20 log d v oa d v om 10 100 1.0 k 100 k 10 k drive channel v cc = +15 v v ee = 15 v r l = 2.0 k w d v od = 20 v pp t a = 25 c mc33078 mc33079 f, frequency (hz) thd, total harmonic distortion (%) 10 100 1.0 k 10 k 100 k v cc = +15 v v ee = 15 v v o = 1.0 vrms t a = 25 c v o , output voltage (vrms) thd, total harmonic distortion (%) 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 v cc = +15 v v ee = 15 v f = 2.0 khz t a = 25 c a v = 1000 a v = 100 a v = 10 a v = 1.0 v cc |v ee | , supply voltage (v) falling 5.0 10 15 20 sr, slew rate (v/ s) m v in = 2/3 (v cc v ee ) t a = 25 c rising 110 105 100 95 90 50 40 30 20 10 0 160 150 140 130 120 110 100 1.0 0.1 0.01 0.001 1.0 0.5 0.1 0.05 0.01 0.005 0.001 10 8.0 6.0 4.0 2.0 0 10 k w v om measurement channel + 100 w 100 w v o 2.0 k w + d v in v o 2.0 k w + r a v in 2.0 k w v o + 10 k w
mc33078 mc33079 7 motorola analog ic device data 25 c 55 c 125 c v cc = +15 v v ee = 15 v d v in = 100 mv d v in v o c l + v cc = +15 v v ee = 15 v v o = 0 v phase gain 125 c 55 c 25 c 25 c 55 c 125 c v in v o c l 2.0 k w + gain phase v cc = +15 v v ee = 15 v r l = 2.0 k w t a = 25 c figure 23. slew rate versus temperature figure 24. voltage gain and phase versus frequency figure 25. open loop gain margin and phase margin versus load capacitance figure 26. overshoot versus output load capacitance figure 27. input referred noise voltage and current versus frequency figure 28. total input referred noise voltage versus source resistance sr, slew rate (v/ s) m v cc = +15 v v ee = 15 v d v in = 20 v t a , ambient temperature ( c) falling rising 55 25 0 25 50 75 100 125 f, frequency (hz) vol a , open loop voltage gain (db) 1.0 10 100 1.0 k 10 k 100 k 1.0 m 10 m 0 45 90 135 180 , excess phase (degrees) f a , open loop gain margin (db) m 1 10 100 1000 0 10 20 30 40 50 60 f , phase margin (degrees) m 70 c l , output load capacitance (pf) c l , output load capacitance (pf) 10 100 1.0 k 10 k os, overshoot (%) 10 100 1.0 k 10 k 100 k 10 0.1 f, frequency (hz) e , input referred noise voltage ( ) n nv/ hz v cc = +15 v v ee = 15 v t a = 25 c voltage current pa/ hz nv/ hz r s , source resistance ( w ) i , referred noise voltage ( n v cc = +15 v v ee = 15 v f = 1.0 khz t a = 25 c v n (total) = 10 100 1.0 k 10 k 100 k 1.0 m , input referred noise current ( ) n v) 10 8.0 6.0 4.0 2.0 120 100 80 60 40 20 0 14 12 10 8.0 6.0 4.0 2.0 0 100 80 60 40 20 0 100 80 50 30 20 10 8.0 5.0 3.0 2.0 1.0 1000 100 10 1.0 d v in v o 2.0 k w + (i n r s ) 2  e n 2  4ktr s 
mc33078 mc33079 8 motorola analog ic device data + phase gain r 1 r 2 v o v cc = +15 v v ee = 15 v r t = r 1 +r 2 a v = +100 v o = 0 v t a = 25 c figure 29. phase margin and gain margin versus differential source resistance figure 30. inverting amplifier slew rate figure 31. noninverting amplifier slew rate figure 32. noninverting amplifier overshoot figure 33. low frequency noise voltage versus time , phase margin (degrees) a , gain margin (db) r t , differential source resistance ( w ) f m 10 100 1.0 k 10 k 100 k v cc = +15 v v ee = 15 v a v = 1.0 r l = 2.0 k w c l = 100 pf t a = 25 c v , output voltage (5.0 v/div) o t, time (2.0 m s/div) v cc = +15 v v ee = 15 v a v = +1.0 r l = 2.0 k w c l = 100 pf t a = 25 c v , output voltage (5.0 v/div) o t, time (2.0 m s/div) v cc = +15 v v ee = 15 v r l = 2.0 k w c l = 100 pf a v = +1.0 t a = 25 c v , output voltage (5.0 v/div) o t, time (200 m s/div) e , input noise voltage (100 nv/div) n t, time (1.0 sec/div) m 14 12 10 8.0 6.0 4.0 2.0 0 70 60 50 40 30 20 10 0 v cc = +15 v v ee = 15 v bw = 0.1 hz to 10 hz t a = 25 c
mc33078 mc33079 9 motorola analog ic device data figure 34. voltage noise test circuit (0.1 hz to 10 hz pp ) + 0.1 m f 10 w 100 k w 2.0 k w 4.7 m f voltage gain = 50,000 scope 1 r in = 1.0 m w 1/2 mc33078 + d.u.t. 100 k w 0.1 m f 2.2 m f 22 m f 24.3 k w 4.3 k w 110 k w note: all capacitors are nonpolarized.
mc33078 mc33079 10 motorola analog ic device data p suffix plastic package case 62605 issue k d suffix plastic package case 75105 (so8) issue r outline dimensions notes: 1. dimension l to center of lead when formed parallel. 2. package contour optional (round or square corners). 3. dimensioning and tolerancing per ansi y14.5m, 1982. 14 5 8 f note 2 a b t seating plane h j g d k n c l m m a m 0.13 (0.005) b m t dim min max min max inches millimeters a 9.40 10.16 0.370 0.400 b 6.10 6.60 0.240 0.260 c 3.94 4.45 0.155 0.175 d 0.38 0.51 0.015 0.020 f 1.02 1.78 0.040 0.070 g 2.54 bsc 0.100 bsc h 0.76 1.27 0.030 0.050 j 0.20 0.30 0.008 0.012 k 2.92 3.43 0.115 0.135 l 7.62 bsc 0.300 bsc m 10 10 n 0.76 1.01 0.030 0.040  seating plane 1 4 5 8 a 0.25 m cb ss 0.25 m b m h  c x 45  l dim min max millimeters a 1.35 1.75 a1 0.10 0.25 b 0.35 0.49 c 0.18 0.25 d 4.80 5.00 e 1.27 bsc e 3.80 4.00 h 5.80 6.20 h 0 7 l 0.40 1.25  0.25 0.50   notes: 1. dimensioning and tolerancing per asme y14.5m, 1994. 2. dimensions are in millimeters. 3. dimension d and e do not include mold protrusion. 4. maximum mold protrusion 0.15 per side. 5. dimension b does not include mold protrusion. allowable dambar protrusion shall be 0.127 total in excess of the b dimension at maximum material condition. d e h a b e b a1 c a 0.10
mc33078 mc33079 11 motorola analog ic device data p suffix plastic package case 64606 issue l d suffix plastic package case 751a03 (so14) issue f outline dimensions notes: 1. leads within 0.13 (0.005) radius of true position at seating plane at maximum material condition. 2. dimension l to center of leads when formed parallel. 3. dimension b does not include mold flash. 4. rounded corners optional. 17 14 8 b a f hg d k c n l j m seating plane dim min max min max millimeters inches a 0.715 0.770 18.16 19.56 b 0.240 0.260 6.10 6.60 c 0.145 0.185 3.69 4.69 d 0.015 0.021 0.38 0.53 f 0.040 0.070 1.02 1.78 g 0.100 bsc 2.54 bsc h 0.052 0.095 1.32 2.41 j 0.008 0.015 0.20 0.38 k 0.115 0.135 2.92 3.43 l 0.300 bsc 7.62 bsc m 0 10 0 10 n 0.015 0.039 0.39 1.01  notes: 1. dimensioning and tolerancing per ansi y14.5m, 1982. 2. controlling dimension: millimeter. 3. dimensions a and b do not include mold protrusion. 4. maximum mold protrusion 0.15 (0.006) per side. 5. dimension d does not include dambar protrusion. allowable dambar protrusion shall be 0.127 (0.005) total in excess of the d dimension at maximum material condition. a b g p 7 pl 14 8 7 1 m 0.25 (0.010) b m s b m 0.25 (0.010) a s t t f r x 45 seating plane d 14 pl k c j m  dim min max min max inches millimeters a 8.55 8.75 0.337 0.344 b 3.80 4.00 0.150 0.157 c 1.35 1.75 0.054 0.068 d 0.35 0.49 0.014 0.019 f 0.40 1.25 0.016 0.049 g 1.27 bsc 0.050 bsc j 0.19 0.25 0.008 0.009 k 0.10 0.25 0.004 0.009 m 0 7 0 7 p 5.80 6.20 0.228 0.244 r 0.25 0.50 0.010 0.019 
mc33078 mc33079 12 motorola analog ic device data motorola reserves the right to make changes without further notice to any products herein. motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. atypicalo parameters which may be provided in motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. all operating parameters, including atypicalso must be validated for each customer application by customer's technical experts. motorola does not convey any license under its patent rights nor the rights of others. motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the motorola product could create a situation where personal injury or death may occur. should buyer purchase or use motorola products for any such unintended or unauthorized application, buyer shall indemnify and hold motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that motorola was negligent regarding the design or manufacture of the part. motorola and are registered trademarks of motorola, inc. motorola, inc. is an equal opportunity/affirmative action employer. how to reach us: usa / europe / locations not listed : motorola literature distribution; japan : nippon motorola ltd.; tatsumispdjldc, 6f seibubutsuryucenter, p.o. box 20912; phoenix, arizona 85036. 18004412447 or 6023035454 3142 tatsumi kotoku, tokyo 135, japan. 038135218315 mfax : rmfax0@email.sps.mot.com touchtone 6 022446609 asia / pacific : motorola semiconductors h.k. ltd.; 8b tai ping industrial park, internet : http://designnet.com 51 ting kok r oad, tai po, n.t., hong kong. 85226629298 mc33078/d   ?


▲Up To Search▲   

 
Price & Availability of 33078

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X